
Implications of Entropy on
Symmetric Key Encryption
Resilience to Quantum

2

	 1. 	 Introduction	 3

	 2. 	 Quantify Entropy	 4

	 2.1 	 Quantum Algorithms	 5

	 2.2 	 Grover’s Search	 5

	 3. 	 Breaking AES with Low-Entropy Keys	 7

	 3.1 	 Run-Time Analysis	 7

	 3.2. 	 Required Number of Qubits	 7

	 3.3 	 Evaluation	 8

	 4. 	 Conclusion	 9

		 References	 11

		 Copyright and Disclaimer	 12

TABLE
OF

CONTENTS

3

INTRODUCTION
Quantum computing leverages the quantum properties of
entanglement and superposition to deliver a huge leap forward
in computation to solve certain problems. Quantum computers
operate using quantum entanglement called quantum bits
or “qubits.” These qubits can exist in a superposition of 0
and 1, allowing a quantum computer to compare multiple
permutations simultaneously, thus making it possible to speed
up the process of solving specific problems. Using quantum
computers, certain computational problems can be solved
within a short period of time that would ordinarily take a
classical computer thousands of years to solve.

The security of cryptography relies primarily on the use of
strong and secure keys. A key is considered strong if it is
difficult to guess and truly random. Generally, information
security standards require a minimum of 128 bits of security
strength for cryptographic keys. This means that on average,
an attacker would need to try at least half of the possible
keys. In the worst-case scenario, they would need to try all
possible keys, which would amount to trying a minimum of
2128 keys as the most efficient method of attack.

Future Quantum computers (QC) will use Grover’s algorithm,
also known as the quantum search algorithm. This quantum
algorithm can efficiently search an unstructured database to
find the unique input that satisfies a given criterion with high
probability (i.e., a cryptographic key). This approach would
weaken symmetric key cryptography, where a QC could
determine the private key that was used to encrypt the data in
a short period of time.

Current thinking assumes that doubling the key size from
128 bits to 256 bits will be sufficient to compensate for
the increased efficiency of a quantum computer to make
symmetric key encryption quantum resistant for at least
the next 15 years. Unfortunately, unless the source of
randomness “entropy” used to generate a private key is truly
random and able to generate a random key length of 256 bits,
then the effect by increasing the key length will be no more
resistant to potential quantum attack.

What is Entropy and the Source of Randomness?

Encryption is a method of encoding data to protect it from
unauthorized access. It uses a secret key to scramble the
data in a way that makes it difficult for anyone to read the
data without the key. One of the fundamental components
of effective encryption is entropy, which is a measure of a
key’s randomness. If the key is not sufficiently random, it may
be possible for an attacker to guess the key, which would
compromise the security of the encrypted data.

The measure of entropy is typically in units of bits, and for
entropy rate, bits per sample. In the context of cryptography,
entropy is important for ensuring the security of data.
The higher the entropy, the more random the data used to
generate a key. This means that a lower entropy would make
it easier for a quantum computer to predict the key used.
Therefore, it is important to use sources of entropy that are
highly random to ensure the security of cryptographic keys.

Cryptographic applications often rely on random data
to function properly. This random data can be obtained
from different sources, including physical random number
generators (RNGs), software-based pseudorandom number
generators (PRNGs), or a combination of both. The quality of
the randomness, or entropy, of the data generated from these
sources can vary. In recent years, the use of quantum random
number generators (QRNGs) has become more popular
because these devices can produce truly random data.

QRNGs use the unpredictable nature of quantum
measurements to generate random strings of data. These
devices typically consist of two main components: a quantum
state generator and a measurement device. The generator
produces a quantum state, which is then measured by
the measurement device to produce a raw random string.
This raw string may be further processed using privacy
amplification techniques to “smooth out” any potential biases
and produce a smaller, truly random, and uniform string that
is independent of an adversary.

Therefore, even if the key length is increased to 256 bits, the
randomness used to generate the cryptographic keys may not
be sufficiently random. As a result, the encrypted data may be
vulnerable to quantum attack sooner than expected.

When Doubling AES Key Size to 256 Has No Impact on
Quantum Resistance

This paper quantifies the effect of poor entropy on AES
256-bit encryption. It shows that the run time of Grover’s
algorithm on a quantum computer to compromise the key is
significantly reduced unless the source of entropy is in fact
truly random.

Furthermore, as quantum computer gate fidelity improves
over time, the number of logical qubits requires to run Grover’s
algorithm is further reduced. This combined effect with poor
entropy could make symmetric key encryption less resistant
to quantum attack in the near term. Serious consideration
should be given to the source of entropy on a device before
increasing the key length for AES, assuming that this would
make it quantum secure.

4

In simple terms, entropy is a measure of uncertainty or
randomness. In the context of quantum computing, von
Neumann entropy [1] and quantum min-entropy [2] are
commonly used to measure the uncertainty of a quantum
state, which can be more complex than a classical state
consisting of combinations of 0’s and 1’s. This is because
qubits can exist in any linear combination of the states 0 and
1 (denoted as |0⟩ and |1⟩).

By measuring the von Neumann entropy or quantum min-
entropy of a quantum state, we can quantify the amount
of uncertainty or randomness and determine how many
independent and uniform random bits can be extracted
from the state. As an example, consider a biased coin that
produces heads two-thirds of the time and tails one-third
of the time. In this case, you would expect a result of heads
roughly 67% of the time. The entropy would be lower than for
a fair coin because the outcome is less uncertain or random.
This has important implications for the security of random
number generators used in cryptography because a biased
generator could potentially be exploited by an adversary.

Von Neumann entropy and quantum min-entropy are two
different but important entropy measures for quantum
systems. Both relate to how many truly random bits (e.g., bits
useful for a cryptographic secret key) one may extract from a
random system. Von Neumann entropy gives an upper-bound
to this, which is useful when dealing with theoretical systems,
while min-entropy gives a practical bound. As its name
implies, min-entropy is always no more than von Neumann
entropy.

Extracting Randomness: Consider the following scenario:
Alice has access to some randomness source (e.g.,
measuring a quantum state). However, this source is not
perfect and may be biased, or an adversary may have partial
control of the source. Let A be the random variable modelling
Alice’s source and E the adversary system Eve (which may be
trivial if there is no adversary). In general, Alice may run her
source through a privacy amplification process to “smooth
out” the randomness in her string outputting a uniform
random string S. In general, this process involves choosing a
random two-universal hash function f , which takes as input
an N -bit string and outputs an ℓ-bit string with ℓ ≤ N ; then
S = f (A) . Furthermore, it can be shown that Eve’s
information on the output string S may be made negligible.

The question, then, is what should ℓ be? If ℓ = N then
the entire string A holds a uniform random string that is
independent of an adversary (and thus may be used as a
secret key for instance). The more information an adversary
has about A, however, the smaller ℓ must be. As it turns out, ℓ
is a direct function of the entropy of A.

Let H(A|E) denote the von Neumann entropy and H∞(A|E)
the min-entropy of this source. If each bit of A is independent

and identically distributed (i.e., A = (A0)N) for some random
variable A0, acting on one bit (that is A is N -independent
copies of some random variable A0) then it can be shown
that [3]:

That is, the von Neumann entropy measures how many
uniform random bits one can extract from an Independent
and Identically Distributed (i.i.d.) source in the asymptotic
case (as the size of the bit string |A| goes to infinity). On
the other hand, one usually cares more about realistic finite
signal cases where |A| < ∞. In this case, one must use min-
entropy:

where ϵ is a security parameter that determines how far the
final string is from uniform and independent.

For an example, let’s consider sources that are independent
of an adversary (that is, there is no adversary). The A random
variable is always classical in these cases, so the von
Neumann entropy actually agrees with the usual Shannon
entropy. Let us also, for this example, consider an i.i.d. source,
so A = A0

N where A0 is a random variable that takes the
value 0 with probability p and takes 1 with probability 1 − p. In
this case, we have:

where all logarithms in this report are base two unless
otherwise specified. The min-entropy, on the other hand, is:

QUANTIFY ENTROPY

(1)

(2)

(3)

(4)

5

Note that it always holds (for any random variable) that
H∞(A|E) ≤ H(A|E). Thus, it is not sufficient in finite key
scenarios to bound Shannon or von Neumann entropy.
Instead, one must look at min-entropy as it is potentially
smaller and produces a “worst-case” bound on the secret
random string size).

For non-i.i.d. scenarios, where the A system takes the value a
∈ {0,1}N with probability pa, the definition of Shannon entropy
is:

The definition of min-entropy is:

Computing the above for arbitrary systems can be difficult
and is usually the main point in a security proof of a
cryptographic protocol of this nature. We do not go into
those details here. However, the key takeaway is that entropy
relates directly to how large a secret key one can extract from
a source. The higher the entropy, the longer the key. If one is
using a low-entropy source, the actual size of the key will be
smaller than the number of bits in the source. One can then
“stretch” the key using, for instance, a pseudo-random number
generator. However, this does not increase the actual entropy
in the final key.

2.1
Quantum Algorithms

Quantum algorithms work with qubits. As stated earlier,
classical bits can be in a state of 0 or 1, whereas qubits can
be in a superposition state of both 0 and 1. In more detail,
a qubit can be in a zero state (denoted |0⟩) or a one state
(denoted |1⟩) but also a superposition of both denoted
α |0⟩ + β |1⟩. This can be extended to n-qubits: Given an
n-qubit state, it may be in any classical n-bit state (such as
|01101 · · ·⟩) or a superposition of all possible n-bit states,
namely ∑x αx |x⟩. In the above superposition states,
the values αx are called probability amplitudes. Given a
superposition state, one may measure it, which causes the
state to collapse to a single n-bit string with probability |αx|

2.

A quantum algorithm is typically represented as a circuit,
which is a collection of simple, basic operations that work
on either a single qubit or across multiple qubits. A classical
algorithm, of course, can be represented in the same way.
However, a classical algorithm can work with only a single
classical input at a time. (Parallel processes can of course
increase this to some extent). A quantum algorithm can
work with a single superposition state at a time . However, a

superposition state can represent all possible n-bit classical
input strings, so this means a quantum algorithm/circuit can
“act on” all possible classical input states simultaneously.
Of course, at the end of the day, one needs to perform a
measurement.

Quantum algorithms generally operate in two stages:

	> The first stage is to take your input data, prepare an
initial quantum state based on this input data, and
run a quantum circuit on it. A quantum circuit is a
collection of elementary “gates” acting on the various
qubits of the system. This circuit is, essentially,
the step-by-step details of the quantum algorithm
telling the quantum computer how to manipulate the
underlying data.

	> The second stage involves measuring the output
of the first stage and performing some classical
post-processing to interpret the result. Based on
the output of this stage, one may have to run the
algorithm again to get a conclusive result.

Both stages may be repeated multiple times before an answer
to the problem can be found. The quantum circuit stage
typically operates on a superposition state and manipulates
the αx values so that, the correct answer to the given problem
is measured with higher probability than wrong answers.

2.2
Grovers Search

Grover’s search algorithm is one of the fundamental
algorithmic breakthroughs in quantum computing showing
that a quantum computer can search through an unsorted
database with a quadratic speedup. Let’s assume we have
a list of items X. In this list, there are N items, and we want
to see if some item x∗ is in the list. If the list is unsorted and
there is no necessary structure to the list, a classical search
algorithm would have to search through the entire list to see
if x∗ is in the list, then this algorithm would require about
N operations to search the list to find x∗. Whereas, using
Grover’s algorithm, a quantum computer can determine if
x∗ is in the list using only approximately √N operations. To
put this into context, if N = 100, a quantum computer would
need only 10 steps to find x∗, whereas a classical computer
would require 100 queries on the list in a worst-case scenario.

An alternative, and more useful, formulation of Grover’s
algorithm is as follows: Let’s assume we have a function
f that takes as input an n-bit string and outputs 0 or 1.
However, this function has the property that there is only one
input string x∗ such that f(x∗) = 1 and for any other input
f(x∗) = 0. One is able to evaluate the function on any input
x, and the goal is to find x∗. This is exactly the problem we
have when breaking AES in the Chosen-Plaintext Attack (CPA)
model. We have a known message and ciphertext mapping
(namely, we have a ciphertext c such that c = AES(k∗, m)
for a known message m and unknown k∗). We can define
f to be a function that decrypts c given a candidate key k.
The function outputs 1 if the decryption leads to the correct
message (thus, only when k = k∗).

(5)

(6)

6

Grover’s search requires two quantum circuits: an oracle
implementation of f and the Grover Diffusion Operator. The
first is a quantum circuit Uf such that applied to the input x*
returns, in some fashion, a TRUE, while for any other input
x will return FALSE. Due to the ability for a quantum circuit
to act on a superposition of states, the algorithm will apply
this single circuit to all possible input states simultaneously.
Second, the diffusion operator causes a shift in the
probability amplitudes to “favor” the correct state slightly.
By this, we mean that the probability of measuring the

wanted, yet currently unknown, x∗ will increase slightly
with each application of the diffusion operator. This is only
a slight increase, however. Thus, the application of these
two circuits must be repeated approximately √N times
before the probability of making the correct measurement
increases substantially.

Figure 1 illustrates an example of Grover’s algorithm for
3 qubits where the quantum circuit to solve the problem
using a phase oracle is:

H Z

H

H

H

H

H

H

H

H

Z ZX

X

X

X

X

X

|0>
|0>
|0>

Init Oracle Amplification

Figure 1: Quantum Circuit for Grover’s Algorithm

Note: this is explained in more detail in IBM Qiskit textbook on Grover’s Algorithm [4]

7

Let’s assume that AES encryption is being utilized with a
physical key size of n bits, where n may be 128, 192, or 256.
Let’s also assume an adversary holds a known ciphertext/
plaintext pair that can be used by Grover’s algorithm oracle to
qualify the key result. Whereby, the adversary has (m, c) such
that c = AES-Enc(k∗, m) (for an unknown secret key k∗).
This is not unrealistic and is, in fact, a potential within the
CPA security model. Given this, we may construct the
following function:

That is, f (k) is a “check function.” It will decrypt the given
ciphertext using key k and see if it equals the known plaintext
m. If it does match, then f (k) = 1 and the adversary knows
that k is the correct key (i.e., k = k∗). Otherwise, f (k) = 0 and
k is not the correct key. Thus, a general brute-force-search
attack against the AES encryption system would be defined
as follows:

1.	 Set k = 0 · · · 0.

2.	 Evaluate f (k). If this is 1, then k is the correct key.

3.	 Otherwise, repeat Step 2 for k = k + 1.

Clearly the above attack’s running time is exponential in n.
For a 128-bit key, it will require approximately 2128 cycles
to break the encryption scheme. However, based on our
earlier discussion, we realize that this entire problem can
be rephrased in terms of Grover Search. Indeed, f (k) is our
oracle evaluation.

Because f (k) is basically running AES-Dec, and because any
classical program can be translated to an efficient quantum
circuit, we may construct a quantum version of this function.
Namely, we may construct an efficient quantum circuit Of
which takes as input n-qubits and performs the following
computation:

Namely, we have Of |k⟩ = |k⟩ for all keys however
k =/ k*; however Of |k*⟩ = – |k*⟩. This is the oracle
function required for AES-Dec using Grover’s algorithm.

3.1
Runtime Analysis

We now consider the running time of Grover’s search for
AES. Again, let n be the physical key-size used and we
assume it is produced from a source with h-bits of entropy
with h ≤ n. Let c128, c192, 2256 be the running time of the
AES decryption function when a physical key-size of 128,
192, or 256 bits is used. This directly determines how long
Of will take to run also.

Now we need to compute the run time (n, h), namely how
long the Grover’s search algorithm is expected to run given
a physical key size of n-bits produced from an h-bit entropy
source. As discussed earlier, Grover consists of running a
diffusion operation followed by the oracle M times. The first
requires approximately 4n + n2 gates, while the second, as
discussed, requires cn time. We assume here that each gate
takes 1 unit of time. Thus, the total time per round is
(4n + n2 + cn), and for M rounds, we require M(4n + n2 + cn)
time. Finally, n Hadamard operators are needed at the start,
and n measurements at the end. Thus, the total run time for
M rounds is 2n+M (4n+n2 +cn). Now we can assume the
worst case in that if k∗ was drawn from a source with h its of
entropy, then the total search space is only 2h. Because M is
approximately the square root of the search space,
we conclude:

3.2
Required Number of Qubits

We now compute the estimated number of qubits needed
to run the Grover’s algorithm assuming imperfect gates.
We assume surface coded qubits whereby one logical
qubit (needed to run the algorithm) is actually encoded by
approximately d2 physical qubits. We assume each individual
gate has a probability of error of 10−3. Using d2 physical qubits
to represent a single logical qubit, the probability of an error,
then, can be reduced to 10– +1 per gate. From the above
analysis, we have a bound on the total number of gates used.
Thus, if one wants, at worst, a probability p of failure, one
will require:

BREAKING AES WITH LOW-ENTROPY KEYS

(7)

(8)

(9)

d
2

(10)

8

resulting in (2d + 1)2 physical qubits per logical qubit. Thus,
the total number of qubits is:

3.3
Evaluation

Using the equations 9 and 11, we may evaluate the relative
security of AES assuming keys are produced from low-
entropy sources. Let’s assume n = 256, meaning the physical
key size is 256 bits. Where the key is produced from an
entropy source h ranging from 32 bits to 256 bits. The
expected running time of the algorithm is shown in Figure
2. Note the exponential nature of the runtime curve after the
entropy exceeds that of approximately 220 bits. This shows
how important it is not simply to have a physical key size of
256 bits, but also to ensure that it is produced from a high-
entropy source. (Note that time = computational cycles.)

Figure 2: Run Time of Grover’s Algorithm to Break AES 256-bit
Encryption Using a 256-Bit Key Across Entropy Range.

The same plot is shown in Figure 3 at log scale. We also note
that the physical key size matters far less than the entropy
source.

Figure 3: Run Time of Grover’s Algorithm to Break AES 256-Bit
Encryption Using Different Key Sizes. (Log Scale)

In particular, Figure 4 shows that increasing the physical
key size from 128 to 256 leads to only a relatively small
increase in Grover’s algorithm attack run time as compared
to increasing the entropy from 128 to 256. The blue line is a
key of physical size 256 bits, while the yellow line is 128 bits.
Notice that simply increasing the key size without increasing
the entropy leads to only a small increase in running time as
compared to Figure 2 which shows increasing the entropy
leads to an exponential increase in running time. Thus, it is
not sufficient to simply increase the physical key size without
also increasing the entropy of the underlying key.

Figure 4: Comparing the Running Time of Grover’s Algorithm
for a Key with a Certain Level of Entropy.

The expected number of qubits needed to perform the
attack is shown in Figure 5. Interestingly, decreasing the
probability error rate per gate of Grover’s attack does not lead
to a significant decrease in the required number of qubits
as compared to the increase needed when increasing the
underlying entropy of the key.

Figure 5: Gate Fidelity – Impact of Required Number of Qubits
to Perform Grover’s Attack.

(11)

1 x 1040

8 x 1039

6 x 1039

4 x 1039

2 x 1039

50 100 150 200 250

No. of Entropy bits

Ti
m

e

Inflection Point
Approx. 220 bit
entropy

1048

1038

1028

1018

50 100 150 200 250

No. of Entropy bits

Ti
m

e

8 x 106

6 x 106

4 x 106

2 x 106

50 100 150 200 250

256-bit Key – No. of Entropy bits

Q
ub

its

27% Error rate
1% Error rate

1025

1021

1017

1013

40 60 80 100 120

No. of Entropy bits

Ti
m

e

109

256-Bit Key
128-Bit Key

1 x 1040

8 x 1039

6 x 1039

4 x 1039

2 x 1039

50 100 150 200 250

No. of Entropy bits

Ti
m

e

Inflection Point
Approx. 220 bit
entropy

1048

1038

1028

1018

50 100 150 200 250

No. of Entropy bits

Ti
m

e

8 x 106

6 x 106

4 x 106

2 x 106

50 100 150 200 250

256-bit Key – No. of Entropy bits

Q
ub

its

27% Error rate
1% Error rate

1025

1021

1017

1013

40 60 80 100 120

No. of Entropy bits

Ti
m

e

109

256-Bit Key
128-Bit Key

1 x 1040

8 x 1039

6 x 1039

4 x 1039

2 x 1039

50 100 150 200 250

No. of Entropy bits

Ti
m

e

Inflection Point
Approx. 220 bit
entropy

1048

1038

1028

1018

50 100 150 200 250

No. of Entropy bits

Ti
m

e

8 x 106

6 x 106

4 x 106

2 x 106

50 100 150 200 250

256-bit Key – No. of Entropy bits

Q
ub

its

27% Error rate
1% Error rate

1025

1021

1017

1013

40 60 80 100 120

No. of Entropy bits

Ti
m

e

109

256-Bit Key
128-Bit Key

1 x 1040

8 x 1039

6 x 1039

4 x 1039

2 x 1039

50 100 150 200 250

No. of Entropy bits

Ti
m

e

Inflection Point
Approx. 220 bit
entropy

1048

1038

1028

1018

50 100 150 200 250

No. of Entropy bits

Ti
m

e

8 x 106

6 x 106

4 x 106

2 x 106

50 100 150 200 250

256-bit Key – No. of Entropy bits

Q
ub

its

27% Error rate
1% Error rate

1025

1021

1017

1013

40 60 80 100 120

No. of Entropy bits

Ti
m

e

109

256-Bit Key
128-Bit Key

9

The source and quality of entropy will have a significant
impact on the security of symmetric key cryptography to be
quantum resistant. This paper has illustrated that unless a
source of entropy used for 256-bit symmetric key AES is truly
random across at least 225 bits, it may have little effect in
terms of being any more secure.

Although protocol standards are being changed to enable
support for 256-bit symmetric key encryption, applying this
across a plethora of devices already in operation may have
some challenges. This may affect devices that:

	> Are unable to be updated to support 256-bit symmetric
key encryption and need to remain in operation using
the current 128-bit or less encryption protocols.

	> Can be updated to support 256-bit symmetric key
encryption, but the source of entropy used to generate
the key is poor, and even if updated will have no
improvement in terms of being quantum secure.

	> Can be retrofitted in the field with a true source of
entropy (e.g., QRNG or entropy as a service). Additional
CPU cycles are required to encrypt and decrypt
messages with extended key lengths, so this would
have implications for the application operating on the
device (i.e., real-time, ultra-low-latency data).

Furthermore, as quantum computers continue to improve,
leading to a reduction in noise, the fidelity of the gates used to
perform algorithms will produce fewer errors. This will allow
Grover’s algorithm to be performed using a smaller number
of qubits, making it more effective at compromising AES with
low entropy. Yet as highlighted, the number of qubits required
to break an AES-256 bit key is not significantly more than that
required for a 128-bit key.

All of these considerations need to be made when assessing
the risk of devices, applications, and services when planning
transition strategies to be quantum resistant in the future.
Effectively planning transition strategies to become quantum
resistant in the future involves assessing their ability to
adapt to new cryptographic techniques and standards as
they emerge. This is necessary to protect against potential
vulnerabilities that may be exposed by the development and
advancement of quantum computing capabilities.

For more information about the ATIS Quantum-Safe
Communications and Information initiative, visit https://www.
atis.org/initiatives/quantum.

CONCLUSION

https://www.atis.org/initiatives/quantum.

https://www.atis.org/initiatives/quantum.

10

Ian Deakin
Principal Technologist, ATIS

Walter Krawec
Assistant Professor of Computer Science and Engineering at
the University of Connecticut

William Trost
Lead Member of Technical Staff, Quantum Computing
Security Lead, CSO, AT&T

CONTRIBUTORS

11

[1]	 Von Neumman/quantum entropy: Nielsen, Michael A., and Isaac Chuang. “Quantum computation and quantum
information.” (2002): 558-559.

[2]	 Quantum min-entropy: Renner, Renato. “Security of quantum key distribution.” International Journal of Quantum
Information 6, no. 01 (2008): 1-127.

[3]	 Devetak, Igor, and Andreas Winter. “Distillation of secret key and entanglement from quantum states.” Proceedings of
the Royal Society A: Mathematical, Physical and engineering sciences 461, no. 2053 (2005): 207-23

[4]	 IBM Qiskit textbook on Grover’s Algorithm https://qiskit.org/textbook/ch-algorithms/grover.html

REFERENCES

https://qiskit.org/textbook/ch-algorithms/grover.html

12

ATIS-I-0000097

Published February 2023

Copyright © 2023 by Alliance for Telecommunications Industry Solutions

All rights reserved.

Alliance for Telecommunications Industry Solutions
1200 G Street, NW, Suite 500
Washington, DC 20005

No part of this publication may be reproduced in any form, in an electronic retrieval system or
otherwise, without the prior written permission of the publisher. For information, contact ATIS
at (202) 628-6380. ATIS is online at http://www.atis.org.

The information provided in this document is directed solely to professionals who have the
appropriate degree of experience to understand and interpret its contents in accordance with
generally accepted engineering or other professional standards and applicable regulations. No
recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY
ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR
REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT
OF INTELLECTUAL PROPERTY RIGHTS. ATIS SHALL NOT BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY ATIS FOR THIS DOCUMENT, AND IN NO EVENT
SHALL ATIS BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES. ATIS EXPRESSLY ADVISES THAT ANY AND ALL USE OF OR RELIANCE UPON THE
INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

COPYRIGHT
AND

DISCLAIMER

http://www.atis.org

www.atis.org
For information, contact ATIS at (202) 628-6380.

