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INTRODUCTION 
Quantum computing leverages the quantum properties of 
entanglement and superposition to deliver a huge leap forward 
in computation to solve certain problems. Quantum computers 
operate using quantum entanglement called quantum bits 
or “qubits.” These qubits can exist in a superposition of 0 
and 1, allowing a quantum computer to compare multiple 
permutations simultaneously, thus making it possible to speed 
up the process of solving specific problems. Using quantum 
computers, certain computational problems can be solved 
within a short period of time that would ordinarily take a 
classical computer thousands of years to solve.

The security of cryptography relies primarily on the use of 
strong and secure keys. A key is considered strong if it is 
difficult to guess and truly random. Generally, information 
security standards require a minimum of 128 bits of security 
strength for cryptographic keys. This means that on average, 
an attacker would need to try at least half of the possible 
keys. In the worst-case scenario, they would need to try all 
possible keys, which would amount to trying a minimum of 
2128 keys as the most efficient method of attack.

Future Quantum computers (QC) will use Grover’s algorithm, 
also known as the quantum search algorithm. This quantum 
algorithm can efficiently search an unstructured database to 
find the unique input that satisfies a given criterion with high 
probability (i.e., a cryptographic key). This approach would 
weaken symmetric key cryptography, where a QC could 
determine the private key that was used to encrypt the data in 
a short period of time.

Current thinking assumes that doubling the key size from 
128 bits to 256 bits will be sufficient to compensate for 
the increased efficiency of a quantum computer to make 
symmetric key encryption quantum resistant for at least 
the next 15 years. Unfortunately, unless the source of 
randomness “entropy” used to generate a private key is truly 
random and able to generate a random key length of 256 bits, 
then the effect by increasing the key length will be no more 
resistant to potential quantum attack.    

What is Entropy and the Source of Randomness?

Encryption is a method of encoding data to protect it from 
unauthorized access. It uses a secret key to scramble the 
data in a way that makes it difficult for anyone to read the 
data without the key. One of the fundamental components 
of effective encryption is entropy, which is a measure of a 
key’s randomness. If the key is not sufficiently random, it may 
be possible for an attacker to guess the key, which would 
compromise the security of the encrypted data.

The measure of entropy is typically in units of bits, and for 
entropy rate, bits per sample. In the context of cryptography, 
entropy is important for ensuring the security of data. 
The higher the entropy, the more random the data used to 
generate a key. This means that a lower entropy would make 
it easier for a quantum computer to predict the key used. 
Therefore, it is important to use sources of entropy that are 
highly random to ensure the security of cryptographic keys. 

Cryptographic applications often rely on random data 
to function properly. This random data can be obtained 
from different sources, including physical random number 
generators (RNGs), software-based pseudorandom number 
generators (PRNGs), or a combination of both. The quality of 
the randomness, or entropy, of the data generated from these 
sources can vary. In recent years, the use of quantum random 
number generators (QRNGs) has become more popular 
because these devices can produce truly random data. 

QRNGs use the unpredictable nature of quantum 
measurements to generate random strings of data. These 
devices typically consist of two main components: a quantum 
state generator and a measurement device. The generator 
produces a quantum state, which is then measured by 
the measurement device to produce a raw random string. 
This raw string may be further processed using privacy 
amplification techniques to “smooth out” any potential biases 
and produce a smaller, truly random, and uniform string that 
is independent of an adversary. 

Therefore, even if the key length is increased to 256 bits, the 
randomness used to generate the cryptographic keys may not 
be sufficiently random. As a result, the encrypted data may be 
vulnerable to quantum attack sooner than expected. 

When Doubling AES Key Size to 256 Has No Impact on 
Quantum Resistance

This paper quantifies the effect of poor entropy on AES 
256-bit encryption. It shows that the run time of Grover’s 
algorithm on a quantum computer to compromise the key is 
significantly reduced unless the source of entropy is in fact 
truly random. 

Furthermore, as quantum computer gate fidelity improves 
over time, the number of logical qubits requires to run Grover’s 
algorithm is further reduced. This combined effect with poor 
entropy could make symmetric key encryption less resistant 
to quantum attack in the near term. Serious consideration 
should be given to the source of entropy on a device before 
increasing the key length for AES, assuming that this would 
make it quantum secure.
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In simple terms, entropy is a measure of uncertainty or 
randomness. In the context of quantum computing, von 
Neumann entropy [1] and quantum min-entropy [2] are 
commonly used to measure the uncertainty of a quantum 
state, which can be more complex than a classical state 
consisting of combinations of 0’s and 1’s. This is because 
qubits can exist in any linear combination of the states 0 and 
1 (denoted as |0⟩ and |1⟩). 

By measuring the von Neumann entropy or quantum min-
entropy of a quantum state, we can quantify the amount 
of uncertainty or randomness and determine how many 
independent and uniform random bits can be extracted 
from the state. As an example, consider a biased coin that 
produces heads two-thirds of the time and tails one-third 
of the time. In this case, you would expect a result of heads 
roughly 67% of the time. The entropy would be lower than for 
a fair coin because the outcome is less uncertain or random. 
This has important implications for the security of random 
number generators used in cryptography because a biased 
generator could potentially be exploited by an adversary.

Von Neumann entropy and quantum min-entropy are two 
different but important entropy measures for quantum 
systems. Both relate to how many truly random bits (e.g., bits 
useful for a cryptographic secret key) one may extract from a 
random system. Von Neumann entropy gives an upper-bound 
to this, which is useful when dealing with theoretical systems, 
while min-entropy gives a practical bound. As its name 
implies, min-entropy is always no more than von Neumann 
entropy.

Extracting Randomness: Consider the following scenario: 
Alice has access to some randomness source (e.g., 
measuring a quantum state). However, this source is not 
perfect and may be biased, or an adversary may have partial 
control of the source. Let A be the random variable modelling 
Alice’s source and E the adversary system Eve (which may be 
trivial if there is no adversary). In general, Alice may run her 
source through a privacy amplification process to “smooth 
out” the randomness in her string outputting a uniform 
random string S. In general, this process involves choosing a 
random two-universal hash function f , which takes as input 
an N -bit string and outputs an ℓ-bit string with ℓ ≤ N ; then  
S = f (A) . Furthermore, it can be shown that Eve’s 
information on the output string S may be made negligible.

The question, then, is what should ℓ be? If ℓ = N then 
the entire string A holds a uniform random string that is 
independent of an adversary (and thus may be used as a 
secret key for instance). The more information an adversary 
has about A, however, the smaller ℓ must be. As it turns out, ℓ 
is a direct function of the entropy of A.

Let H(A|E) denote the von Neumann entropy and H∞(A|E) 
the min-entropy of this source. If each bit of A is independent 

and identically distributed (i.e., A = (A0)N) for some random 
variable A0, acting on one bit (that is A is N -independent 
copies of some random variable A0) then it can be shown 
that [3]:

That is, the von Neumann entropy measures how many 
uniform random bits one can extract from an Independent 
and Identically Distributed (i.i.d.) source in the asymptotic 
case (as the size of the bit string |A| goes to infinity). On 
the other hand, one usually cares more about realistic finite 
signal cases where |A| < ∞. In this case, one must use min-
entropy:

where ϵ is a security parameter that determines how far the 
final string is from uniform and independent.

For an example, let’s consider sources that are independent 
of an adversary (that is, there is no adversary). The A random 
variable is always classical in these cases, so the von 
Neumann entropy actually agrees with the usual Shannon 
entropy. Let us also, for this example, consider an i.i.d. source, 
so A = A0

N where A0 is a random variable that takes the 
value 0 with probability p and takes 1 with probability 1 − p. In 
this case, we have:

where all logarithms in this report are base two unless 
otherwise specified. The min-entropy, on the other hand, is:

QUANTIFY ENTROPY

(1)

(2)

(3)

(4)
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Note that it always holds (for any random variable) that 
H∞(A|E) ≤ H(A|E). Thus, it is not sufficient in finite key 
scenarios to bound Shannon or von Neumann entropy. 
Instead, one must look at min-entropy as it is potentially 
smaller and produces a “worst-case” bound on the secret 
random string size).

For non-i.i.d. scenarios, where the A system takes the value a 
∈ {0,1}N with probability pa, the definition of Shannon entropy 
is:

 

The definition of min-entropy is:

 

Computing the above for arbitrary systems can be difficult 
and is usually the main point in a security proof of a 
cryptographic protocol of this nature. We do not go into 
those details here. However, the key takeaway is that entropy 
relates directly to how large a secret key one can extract from 
a source. The higher the entropy, the longer the key. If one is 
using a low-entropy source, the actual size of the key will be 
smaller than the number of bits in the source. One can then 
“stretch” the key using, for instance, a pseudo-random number 
generator. However, this does not increase the actual entropy 
in the final key.

2.1  
Quantum Algorithms 

Quantum algorithms work with qubits. As stated earlier, 
classical bits can be in a state of 0 or 1, whereas qubits can 
be in a superposition state of both 0 and 1. In more detail, 
a qubit can be in a zero state (denoted |0⟩) or a one state 
(denoted |1⟩) but also a superposition of both denoted  
α |0⟩ + β |1⟩. This can be extended to n-qubits: Given an 
n-qubit state, it may be in any classical n-bit state (such as 
|01101 · · ·⟩) or a superposition of all possible n-bit states, 
namely ∑x αx |x⟩. In the above superposition states, 
the values αx are called probability amplitudes. Given a 
superposition state, one may measure it, which causes the 
state to collapse to a single n-bit string with probability |αx|

2.

A quantum algorithm is typically represented as a circuit, 
which is a collection of simple, basic operations that work 
on either a single qubit or across multiple qubits. A classical 
algorithm, of course, can be represented in the same way. 
However, a classical algorithm can work with only a single 
classical input at a time. (Parallel processes can of course 
increase this to some extent). A quantum algorithm can 
work with a single superposition state at a time . However, a 

superposition state can represent all possible n-bit classical 
input strings, so this means a quantum algorithm/circuit can 
“act on” all possible classical input states simultaneously. 
Of course, at the end of the day, one needs to perform a 
measurement.

Quantum algorithms generally operate in two stages: 

	> The first stage is to take your input data, prepare an 
initial quantum state based on this input data, and 
run a quantum circuit on it. A quantum circuit is a 
collection of elementary “gates” acting on the various 
qubits of the system. This circuit is, essentially, 
the step-by-step details of the quantum algorithm 
telling the quantum computer how to manipulate the 
underlying data.

	> The second stage involves measuring the output 
of the first stage and performing some classical 
post-processing to interpret the result. Based on 
the output of this stage, one may have to run the 
algorithm again to get a conclusive result.

Both stages may be repeated multiple times before an answer 
to the problem can be found. The quantum circuit stage 
typically operates on a superposition state and manipulates 
the αx values so that, the correct answer to the given problem 
is measured with higher probability than wrong answers.

2.2  
Grovers Search

Grover’s search algorithm is one of the fundamental 
algorithmic breakthroughs in quantum computing showing 
that a quantum computer can search through an unsorted 
database with a quadratic speedup. Let’s assume we have 
a list of items X. In this list, there are N items, and we want 
to see if some item x∗ is in the list. If the list is unsorted and 
there is no necessary structure to the list, a classical search 
algorithm would have to search through the entire list to see 
if x∗ is in the list, then this algorithm would require about 
N operations to search the list to find x∗. Whereas, using 
Grover’s algorithm, a quantum computer can determine if 
x∗ is in the list using only approximately √N operations. To 
put this into context, if N = 100, a quantum computer would 
need only 10 steps to find x∗, whereas a classical computer 
would require 100 queries on the list in a worst-case scenario. 

An alternative, and more useful, formulation of Grover’s 
algorithm is as follows: Let’s assume we have a function 
f that takes as input an n-bit string and outputs 0 or 1. 
However, this function has the property that there is only one 
input string x∗ such that f(x∗) = 1 and for any other input 
f(x∗) = 0. One is able to evaluate the function on any input 
x, and the goal is to find x∗. This is exactly the problem we 
have when breaking AES in the Chosen-Plaintext Attack (CPA) 
model. We have a known message and ciphertext mapping 
(namely, we have a ciphertext c such that c = AES(k∗, m) 
for a known message m and unknown k∗ ). We can define 
f to be a function that decrypts c given a candidate key k. 
The function outputs 1 if the decryption leads to the correct 
message (thus, only when k = k∗).

(5)

(6)
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Grover’s search requires two quantum circuits: an oracle 
implementation of f and the Grover Diffusion Operator. The 
first is a quantum circuit Uf  such that applied to the input x* 
returns, in some fashion, a TRUE, while for any other input 
x will return FALSE. Due to the ability for a quantum circuit 
to act on a superposition of states, the algorithm will apply 
this single circuit to all possible input states simultaneously. 
Second, the diffusion operator causes a shift in the 
probability amplitudes to “favor” the correct state slightly. 
By this, we mean that the probability of measuring the 

wanted, yet currently unknown, x∗ will increase slightly 
with each application of the diffusion operator. This is only 
a slight increase, however. Thus, the application of these 
two circuits must be repeated approximately √N times 
before the probability of making the correct measurement 
increases substantially.

Figure 1 illustrates an example of Grover’s algorithm for 
3 qubits where the quantum circuit to solve the problem 
using a phase oracle is:

H Z
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H

H

H

H

H

H

H

Z ZX

X

X

X

X

X

|0>
|0>
|0>

Init Oracle Amplification

Figure 1: Quantum Circuit for Grover’s Algorithm

Note: this is explained in more detail in IBM Qiskit textbook on Grover’s Algorithm [4] 
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Let’s assume that AES encryption is being utilized with a 
physical key size of n bits, where n may be 128, 192, or 256. 
Let’s also assume an adversary holds a known ciphertext/
plaintext pair that can be used by Grover’s algorithm oracle to 
qualify the key result. Whereby, the adversary has (m, c) such 
that c = AES-Enc(k∗, m) (for an unknown secret key k∗).  
This is not unrealistic and is, in fact, a potential within the  
CPA security model. Given this, we may construct the 
following function:

That is, f (k) is a “check function.” It will decrypt the given 
ciphertext using key k and see if it equals the known plaintext 
m. If it does match, then f (k) = 1 and the adversary knows 
that k is the correct key (i.e., k = k∗). Otherwise, f (k) = 0 and 
k is not the correct key. Thus, a general brute-force-search 
attack against the AES encryption system would be defined 
as follows:

1.	 Set k = 0 · · · 0.

2.	 Evaluate f (k). If this is 1, then k is the correct key.

3.	 Otherwise, repeat Step 2 for k = k + 1.

Clearly the above attack’s running time is exponential in n. 
For a 128-bit key, it will require approximately 2128 cycles 
to break the encryption scheme. However, based on our 
earlier discussion, we realize that this entire problem can 
be rephrased in terms of Grover Search. Indeed, f (k) is our 
oracle evaluation.

Because f (k) is basically running AES-Dec, and because any 
classical program can be translated to an efficient quantum 
circuit, we may construct a quantum version of this function. 
Namely, we may construct an efficient quantum circuit Of 
which takes as input n-qubits and performs the following 
computation:

Namely, we have Of |k⟩ = |k⟩ for all keys however  
k =/ k*; however Of |k*⟩ = – |k*⟩. This is the oracle 
function required for AES-Dec using Grover’s algorithm.

3.1  
Runtime Analysis 

We now consider the running time of Grover’s search for 
AES. Again, let n be the physical key-size used and we 
assume it is produced from a source with h-bits of entropy 
with h ≤ n. Let c128, c192, 2256 be the running time of the 
AES decryption function when a physical key-size of 128, 
192, or 256 bits is used. This directly determines how long 
Of will take to run also.

Now we need to compute the run time (n, h), namely how 
long the Grover’s search algorithm is expected to run given 
a physical key size of n-bits produced from an h-bit entropy 
source. As discussed earlier, Grover consists of running a 
diffusion operation followed by the oracle M times. The first 
requires approximately 4n + n2 gates, while the second, as 
discussed, requires cn time. We assume here that each gate 
takes 1 unit of time. Thus, the total time per round is  
(4n + n2 + cn), and for M rounds, we require M(4n + n2 + cn) 
time. Finally, n Hadamard operators are needed at the start, 
and n measurements at the end. Thus, the total run time for 
M rounds is 2n+M (4n+n2 +cn). Now we can assume the 
worst case in that if k∗ was drawn from a source with h its of 
entropy, then the total search space is only 2h. Because M is 
approximately the square root of the search space,  
we conclude:

3.2  
Required Number of Qubits

We now compute the estimated number of qubits needed 
to run the Grover’s algorithm assuming imperfect gates. 
We assume surface coded qubits whereby one logical 
qubit (needed to run the algorithm) is actually encoded by 
approximately d2 physical qubits. We assume each individual 
gate has a probability of error of 10−3. Using d2 physical qubits 
to represent a single logical qubit, the probability of an error, 
then, can be reduced to 10–   +1 per gate. From the above 
analysis, we have a bound on the total number of gates used. 
Thus, if one wants, at worst, a probability p of failure, one  
will require:

BREAKING AES WITH LOW-ENTROPY KEYS  

(7)

(8)

(9)

d
2

(10)
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resulting in (2d + 1)2 physical qubits per logical qubit. Thus, 
the total number of qubits is:

3.3  
Evaluation

Using the equations 9 and 11, we may evaluate the relative 
security of AES assuming keys are produced from low-
entropy sources. Let’s assume n = 256, meaning the physical 
key size is 256 bits. Where the key is produced from an 
entropy source h ranging from 32 bits to 256 bits. The 
expected running time of the algorithm is shown in Figure 
2. Note the exponential nature of the runtime curve after the 
entropy exceeds that of approximately 220 bits. This shows 
how important it is not simply to have a physical key size of 
256 bits, but also to ensure that it is produced from a high-
entropy source. (Note that time = computational cycles.) 

Figure 2: Run Time of Grover’s Algorithm to Break AES 256-bit 
Encryption Using a 256-Bit Key Across Entropy Range.   

The same plot is shown in Figure 3 at log scale. We also note 
that the physical key size matters far less than the entropy 
source. 

Figure 3: Run Time of Grover’s Algorithm to Break AES 256-Bit 
Encryption Using Different Key Sizes. (Log Scale) 

In particular, Figure 4 shows that increasing the physical 
key size from 128 to 256 leads to only a relatively small 
increase in Grover’s algorithm attack run time as compared 
to increasing the entropy from 128 to 256. The blue line is a 
key of physical size 256 bits, while the yellow line is 128 bits. 
Notice that simply increasing the key size without increasing 
the entropy leads to only a small increase in running time as 
compared to Figure 2 which shows increasing the entropy 
leads to an exponential increase in running time. Thus, it is 
not sufficient to simply increase the physical key size without 
also increasing the entropy of the underlying key.

 
Figure 4: Comparing the Running Time of Grover’s Algorithm 
for a Key with a Certain Level of Entropy.  

The expected number of qubits needed to perform the 
attack is shown in Figure 5. Interestingly, decreasing the 
probability error rate per gate of Grover’s attack does not lead 
to a significant decrease in the required number of qubits 
as compared to the increase needed when increasing the 
underlying entropy of the key.

Figure 5: Gate Fidelity – Impact of Required Number of Qubits 
to Perform Grover’s Attack.  
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The source and quality of entropy will have a significant 
impact on the security of symmetric key cryptography to be 
quantum resistant. This paper has illustrated that unless a 
source of entropy used for 256-bit symmetric key AES is truly 
random across at least 225 bits, it may have little effect in 
terms of being any more secure. 

Although protocol standards are being changed to enable 
support for 256-bit symmetric key encryption, applying this 
across a plethora of devices already in operation may have 
some challenges. This may affect devices that:  

	> Are unable to be updated to support 256-bit symmetric 
key encryption and need to remain in operation using 
the current 128-bit or less encryption protocols.   

	> Can be updated to support 256-bit symmetric key 
encryption, but the source of entropy used to generate 
the key is poor, and even if updated will have no 
improvement in terms of being quantum secure.

	> Can be retrofitted in the field with a true source of 
entropy (e.g., QRNG or entropy as a service). Additional 
CPU cycles are required to encrypt and decrypt 
messages with extended key lengths, so this would 
have implications for the application operating on the 
device (i.e., real-time, ultra-low-latency data). 

Furthermore, as quantum computers continue to improve, 
leading to a reduction in noise, the fidelity of the gates used to 
perform algorithms will produce fewer errors. This will allow 
Grover’s algorithm to be performed using a smaller number 
of qubits, making it more effective at compromising AES with 
low entropy. Yet as highlighted, the number of qubits required 
to break an AES-256 bit key is not significantly more than that 
required for a 128-bit key.

All of these considerations need to be made when assessing 
the risk of devices, applications, and services when planning 
transition strategies to be quantum resistant in the future. 
Effectively planning transition strategies to become quantum 
resistant in the future involves assessing their ability to 
adapt to new cryptographic techniques and standards as 
they emerge. This is necessary to protect against potential 
vulnerabilities that may be exposed by the development and 
advancement of quantum computing capabilities. 

For more information about the ATIS Quantum-Safe 
Communications and Information initiative, visit https://www.
atis.org/initiatives/quantum. 

CONCLUSION 

https://www.atis.org/initiatives/quantum. 

https://www.atis.org/initiatives/quantum. 
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